Машиностроение и механика

  • Increase font size
  • Default font size
  • Decrease font size

Моделирование процессов и объектов в металлургии: системный анализ - Наличие структуры или организации

Article Index
Моделирование процессов и объектов в металлургии: системный анализ
Наличие структуры или организации
Наличие интегративного качества
Классификация систем по их свойствам
Моделирование технологических процессов
Алгоритм создания модели
Структурный подход для построения математических моделей
Использование структурного подхода для составления моделей на молекулярном уровне
Матричный метод
Моделирование равновесия в системах химических реакций
Моделирование кинетики химических реакций
Скорость сложной химической реакции
Интегрирование уравнений кинетики
Численные методы интегрирования
Химические реакции в потоке вещества
Моделирование явлений тепло- и массопереноса
Моделирование тепловых явлений
Тепловая работа аппарата с частичным теплообменом
All Pages

 

Наличие структуры или организации

 

Устойчивая во времени конфигурация связей образует структуру системы.

 

 

clip_image009

При описании систем на стадии системного анализа используется иерархический подход: на первом этапе описания системы стремятся представить её как совокупность небольшого количества элементов, при этом каждый элемент представляет собой подсистему и на следующем иерархическом уровне может быть разделен на некоторое количество своих элементов.

Иерархический подход позволяет представить сложные технические системы в простом виде, упрощая понимание взаимодействия всех элементов, что дает возможность представить функционирование всей системы в целом. Чем глубже уровень описания системы, тем больше элементов мы различаем в ее составе.

Например, автомобиль можно рассматривать как техническую систему. Цель такой системы – перевозка пассажиров и/или груза в заданном направлении (по дороге) за счет использования энергии топлива. На первом этапе системного анализа автомобиль является совокупностью небольшого числа элементов: двигатель является источником энергии, ходовая часть обеспечивает передвижение по дороге, рулевое управление и тормоза обеспечивают следование заданной траектории движения, кузов, шасси и кабина объединяют все элементы и несут груз и пассажиров.

При более глубоком анализе, на следующем иерархическом уровне, каждый из перечисленных элементов автомобиля рассматривается как подсистема, состоящая из своих элементов. Двигатель как источник энергии для движения, преобразует химическую энергию топлива в механическую энергию вращения вала. Для этого двигатель должен иметь систему питания топливом и воздухом (без воздуха топливо не горит), систему выпуска отработавших газов, механизм распределения топливо-воздушной смеси по цилиндрам, кривошипно-шатунный механизм, с помощью которого движение поршней в цилиндрах преобразуется во вращение вала.

Такой анализ можно продолжать и далее, до отдельных деталей, из которых вес и состоит. Разумеется, количество таких деталей будет возрастать очень быстро и достигнет многих тысяч. Если начать с того, что автомобиль является совокупностью нескольких тысяч деталей, то взаимодействие их понять невозможно.

Существуют типовые структуры связей в системах:

1.Сетевая структура. Пусть имеется система из пяти  элементов,  число элементов n=5, каждый из них имеет  n – 1 связь.

clip_image010

 

Каждый элемент в такой структуре связан со всеми остальными.

Достоинства: устойчивость, равноправность элементов. В случае, если какой-либо элемент неработоспособен (потерял связи с остальными элементами системы), система в целом остается работоспособной. Ущерб с точки зрения функционирования системы минимальный и одинаковый для любого из элементов.

Количество связей в такой структуре  наибольшее, а каждая связь требует определенных затрат. Следовательно, такая структура надежная, но дорогая. Ее применение оправданно там, где надежность функционирования системы является основным требованием, например в энергетике.

2. Скелетная структура. Рассмотрим систему из девяти элементов, n=9. Пусть система имеет скелетную структуру. Каковы ее особенности?

clip_image011

Такая структура обладает компромиссными качествами и требованиями к элементам. Связи элементов образуют фрагменты, которые объединяются затем в целостную систему. Требования в отношении надежности функционирования элементов становятся неодинаковыми. Так например, нарушения в работе элемента 3 означают минимальный ущерб для системы, означающий потерю только одного этого элемента. Если же перестает работать элемент 1, то система теряет целый фрагмент, а нарушение работы элемента 4 означают, что система распадается на отдельные фрагменты и перестает функционировать. Очевидно, что самые высокие требования по надежности предъявляются к элементу 4, средние – к элементам 1 и 7, минимальные- к элементам 3,6 и 9.

3. Централистская структура. Рассмотрим еще раз систему из девяти элементов, n=9, но имеющую централистскую структуру. Основное ее отличие от предыдущих структур в том, чтоclip_image012

 

количество связей минимально. Это способствует снижению стоимости связей, но выдвигает жесткие требования к надежности элементов. Наиболее надежным должен быть центральный элемент системы, поскольку при невозможности его функционирования система тут же превращается в набор разрозненных элементов, т.е. перестает работать как целостный объект. К периферическим элементам требования по надежности остаются достаточно низкими: утрата любого из этих элементов приводит к минимальному ущербу для функционирования всей системы. Пример такой системы в технике – стационарные телефонные системы связи.